ABSTRACT
Bronchoscopic diagnosis and intervention in the lung is a new frontier for steerable needles, where they have the potential to enable minimally invasive, accurate access to small nodules that cannot be reliably accessed today. However, the curved, flexible bronchoscope requires a much longer needle than prior work has considered, with complex interactions between the needle and bronchoscope channel, introducing new challenges in steerable needle control. In particular, friction between the working channel and needle causes torsional windup along the bronchoscope, the effects of which cannot be directly measured at the tip of thin needles embedded with 5 degree-of-freedom magnetic tracking coils. To compensate for these effects, we propose a new torsional deadband-aware Extended Kalman Filter to estimate the full needle tip pose including the axial angle, which defines its steering direction. We use the Kalman Filter estimates with an established sliding mode controller to steer along desired trajectories in lung tissue. We demonstrate that this simple torsional deadband model is sufficient to account for the complex interactions between the needle and endoscope channel for control purposes. We measure mean final targeting error of 1.36 mm in phantom tissue and 1.84 mm in ex-vivo porcine lung, with mean trajectory following error of 1.28 mm and 1.10 mm, respectively.

INTRODUCTION
The development of bevel tip steerable needles [1] has been motivated by their potential to steer around obstacles and correct
for factors like tissue deformation, needle bending, and other effects that cause traditional needles to miss their desired targets (see [2] and [3] for reviews). Steerable needles have been envisioned in applications including the liver [4], lungs [5], kidneys [4], prostate [6], and brain [7].

Interventions in the lung [5] are particularly promising, given the large number of potentially cancerous small nodules for which biopsy is desired [8], but for which complication rates are high for percutaneous approaches [9]. Similarly, existing bronchoscope-delivered needles either cannot reach these nodules (due to lack of an airway in close proximity), or cannot reach them with sufficient accuracy, leading to low yields [10]. Bevel tip steerable needles have the potential to enhance accuracy and steer to targets far from airways large enough to admit bronchoscopes. However, controlling the needle once delivered into the lung through a bronchoscope is challenging, for several reasons.

First, the bronchoscope requires an insertion pathway (bronchoscope channel) that is much longer than has previously been considered for percutaneous needle insertion. Second, it is desirable to use small-diameter needles for reducing required bronchoscope port diameter (and hence potentially facilitating the use of smaller diameter bronchoscopes, which can reach deeper into the lung). Another reason a small diameter is desirable is that it reduces needle bending stiffness, which reduces the loads required on bronchoscope tendons to deflect the tip of the bronchoscope with the needle loaded inside of it. Yet another motivation for smaller diameter needles is reduction of invasiveness for the patient; smaller needles require less tissue disruption during insertion [11]. Using 5 degree-of-freedom (DOF) tracking coils (0.41 mm diameter), rather than the larger 6-DOF versions (0.8 mm diameter) [12], for feedback enables smaller diameter needles.

Both long needle length and small diameter contribute to torsional windup along the needle in the presence of needle-port friction. Torsional friction acting along the long flexible needle shaft causes the needle tip rotation (about the needle axis) to be different than the needle base rotation. In general, it is challenging to model the interaction of a flexible metal cylinder passing through a larger tube (see e.g. [13]). Furthermore, the one DOF lost in moving from a larger 6-DOF magnetic tracking coil to a smaller 5-DOF coil is precisely the one we most care about—the axial angle at the needle’s tip, which defines the bevel’s direction, and hence the direction of forward progression of the needle as it is inserted.

The torsional friction challenge has been studied previously for steerable needles in the context of torsion induced by needle-tissue interactions [14–17]. These results assume continuous contact with tissue, as well as a length of unsupported needle outside the tissue, i.e. the context one would expect in a percutaneous insertion. Thus, these results do not apply directly to the non-uniform contact conditions along the interior of a bronchoscope port. In this paper, rather than model this complex interaction explicitly, we instead assume a simplified model with Coulomb friction which induces a torsional deadband (i.e. a range of values for which the tip does not axially rotate when one changes the direction of base axial rotation), with the goal of determining whether such a model is sufficient for closed-loop control.

Various forms of observer models, including Extended Kalman Filters (EKFs) have been used in a variety of ways to estimate state in both 2D and 3D needle steering. Needle-tissue interaction forces [18, 19] and needle deflection [20] have both been estimated using this method. In another study, an EKF was used to approximate belief dynamics in belief space planning for steerable needles [21]. EKFs have also been used to estimate a steerable needle’s planar, single-dimensional orientation from the needle’s two-dimensional position, sensed using a vision system [22, 23]. This concept has also been applied to full 6-DOF pose estimation from a sensed sequence of 3D needle tip positions [24, 25]. Observers have also been used previously to estimate the axial orientation of a steerable needle while sensing the position using a vision system [23, 26].

Our approach in this paper is inspired by these prior papers and adapts their EKF paradigm to the context of the torsional deadband mentioned previously. In terms of control, a wide variety of controllers have been developed for bevel-tip steerable needles (see [27] for a review). In this paper, we use the established sliding-mode controller proposed by Rucker et al. [28]. The primary contribution of our paper is to determine whether a simple Coulomb friction model can be used to effectively control a trans-bronchoscopic steerable needle with Kalman Filter-based roll estimation. We find that this simple modeling and control approach produces excellent accuracy when steering in phantom tissues and in inflated ex-vivo porcine lung tissue.

METHODS

In this section, we explain the integration of the torsional deadband into the steerable needle model, the Extended Kalman Filter estimation, and the needle steering controller. All vectors are written in bold lower case letters, and matrices are denoted with bold capital letters. The steerable needle model is illustrated in Figure 1, and the needle state estimation and control scheme is shown in Figure 2.

Review of Steerable Needle Kinematics

We use the nonholonomic steerable needle kinematic model described in [1]. In this model, the steerable needle is assumed to follow a constant curvature path when inserted, as shown in Figure 1. The needle curves in the direction of its bevel, and axial rotation changes the plane in which the needle curves. The
The needle tip frame rotation can also be expressed using quaternions as

\[
\begin{bmatrix}
0 \\
0 \\
u_1
\end{bmatrix} = q \ast \begin{bmatrix}
0 \\
0 \\
u_1
\end{bmatrix} \ast q^{-1},
\]

where \(q \) is the unit quaternion representing the orientation of the needle tip, \(u_1 \) is the insertion speed at the base, and \(u_2 \) is the rotation speed of the needle.

In this deadband model, the input \(u_2 \) in the kinematic model (2) is a function of the tip angle \(\theta_t(t) \), the actuator angle \(\theta_b(t) \) and its derivative \(\dot{\theta}_b = \dot{\theta}_b(t) \), as follows:

\[
u_2 = u_2 \cdot C(\theta_t, \theta_b, \dot{\theta}_b),
\]

where the function \(C(\theta_t, \theta_b, \dot{\theta}_b) \) checks the conditions for deadband and returns 1 or 0 as described below:

\[
C(\theta_t, \theta_b, \dot{\theta}_b) = \begin{cases}
1 & \text{if } \theta_t \leq \theta_b - c \land \dot{\theta}_b > 0 \\
1 & \text{if } \theta_t \geq \theta_b + c \land \dot{\theta}_b < 0 \\
0 & \text{otherwise.}
\end{cases}
\]
We define $2c$ as the total width of the rotational deadband which depends on the frictional forces on the needle. We assume c to be a constant based on our Coulomb friction model, and it can be determined prior to steering.

Extended Kalman Filter with 5-DOF Magnetic Tracker

Our Extended Kalman Filter uses magnetic tracker information from an embedded 5-DOF coil at the needle tip, in combination with the torsional deadband-aware needle model described in the previous section. We use the following notation: $\hat{\theta}$ denotes an estimated state, $\hat{}$ denotes a predicted state, and $\tilde{}$ denotes a sensed quantity. The full 6-DOF pose of the needle tip is estimated by the EKF as $\hat{\mathbf{x}} = [\hat{\mathbf{p}}^T \hat{\mathbf{q}}^T]^T$, where $\hat{\mathbf{p}}$ denotes the estimated tip position and $\hat{\mathbf{q}}$ denotes the estimated unit quaternion representing the tip orientation. The actuation variables are taken as u_1 (insertion) and u_2 (rotation speed at the base, which affects u_2 through the deadband model). The torsion-aware needle model is used to predict the needle state based on the commanded actuation. The EKF prediction step is written as

$$
\mathbf{x}'_n = f(\mathbf{x}_{n-1}, u_1, u_2, \Delta t)
$$

$$
\mathbf{P}'_n = J_{n-1} \mathbf{P}_{n-1} J_{n-1}^T + \mathbf{Q},
$$

where \mathbf{x}'_n and \mathbf{P}'_n are the new predicted state and state covariance matrix, respectively. The variable n is used for discrete time. Δt is the time step between each prediction. $f(\cdot)$ is the torsional deadband aware needle model function which is computed by discretely integrating (2) using a single forward-Euler step over Δt, with $u_1 = u_1$ and u_2 computed by the deadband model in (4) and (5). J is the 7x7 Jacobian matrix for the needle model, given by $J_{n-1} = \frac{df}{\partial \mathbf{x}}|_{\mathbf{x} = \mathbf{x}_{n-1}}$. The matrix \mathbf{Q} is the covariance of the process noise.

Sensor information is then used to update the estimate. The 5-DOF information retrieved from the electromagnetic tracker consists of the position, $\hat{\mathbf{p}}_n$, and the needle bearing, which is the unit vector along the z-axis, $\hat{\mathbf{z}}_{z,n}$. The discrete derivative of this needle bearing vector provides a vector indicating the direction in which the needle is curving, which is along the negative y-axis of the needle as shown in Figure 1. With normalization of the derivative, y-axis unit vector is given by

$$
\hat{\mathbf{v}}_{y,n} = -\frac{\hat{\mathbf{v}}_{y,n} - \hat{\mathbf{v}}_{y,n-1}}{|\hat{\mathbf{v}}_{y,n} - \hat{\mathbf{v}}_{y,n-1}|}.
$$

The sensing vector is then constructed as $\mathbf{y}_n = [\mathbf{p}_n^T \hat{\mathbf{v}}_{z,n}^T \hat{\mathbf{v}}_{y,n}^T]^T$.

Copyright © 2020 by ASME
This is compared to the predicted value $\hat{y}_n^\prime = h(x_n^\prime)$ to calculate the residuals as

$$r_n = \hat{y}_n - y_n^\prime,$$ \hspace{1cm} (8)

where $h(\cdot)$ is the function relating the state variables to the measurement. The following Kalman equations are used to update the estimate based on the residuals:

$$S_n = H_n P_n H_n^T + Z$$

$$K_n = P_n H_n^T S_n^{-1}$$

$$\hat{x}_n = x_n^\prime + K_n r_n$$

$$P_n = (I - K_n H_n) P_n^\prime,$$ \hspace{1cm} (9)

where S_n is the innovation covariance, K_n is a matrix containing the Kalman gains, and I is the identity matrix. H is the 9x7 Jacobian matrix for measurement function, defined by $H_n = \frac{\partial h}{\partial x} |_{x=x_n^\prime}$. The matrix Z is the sensor noise covariance matrix. The brand new state estimate \hat{x}_n is used to inform the controller of the needle tip position.

Needle Steering Control

We used the basic Sliding Mode Controller from [28] for needle steering. The current needle tip state estimate \hat{x}_n from the EKF and the desired point, p_d^\prime, are used to calculate the error vector in the needle tip frame, e:

$$\begin{bmatrix} 0 \\ e_x \\ e_y \\ e_z \end{bmatrix} = \begin{bmatrix} 0 \\ -e_x \\ e_y \end{bmatrix} = \hat{q}_n^{-1} * \begin{bmatrix} 0 \\ p_d - \hat{p}_n \end{bmatrix} * \hat{q}_n.$$ \hspace{1cm} (10)

Using the components of e, angular error can be determined as

$$\sigma = \text{atan2}(e_x, -e_y),$$ \hspace{1cm} (11)

where σ is the angular error between the desired curving direction and current estimated curving direction. Finally, the base insertion and rotation speeds are determined as

$$\nu_1 = \lambda_1$$

$$\nu_2 = \lambda_2 \text{sign}(\sigma),$$ \hspace{1cm} (12)

where λ_1 and λ_2 are the pre-selected sliding mode controller parameters for insertion speed and rotation speed, respectively. The function sign(\cdot) is the basic signum function that returns -1 when the input is negative, +1 when the input is positive, and 0 when the input is 0.

Note that this control strategy can be used to steer toward a single target point as well as along a desired trajectory. To follow trajectories, the desired point p_d for the controller is moved along the trajectory at the insertion speed. A short lead distance is used to ensure the desired point is ahead of the needle along the trajectory.

EXPERIMENTS & RESULTS

We validated our proposed method by performing needle steering experiments in gelatin and ex-vivo porcine lung tissue. For all experiments, we used the transbronchial robotic needle insertion system shown in Figure 4 which is described in [5], with an updated actuation unit described in [29], connected to a flexible bronchoscope (Ambu aScopeTM 4, Ambu, Inc., USA) with an 81 cm long working channel.

The needle we used in the experiments was utilizing a flexure tip concept, originally proposed in [30], with a cutout design for the flexure element [31, 32]. The head of the needle was made from a superelastic Nitinol tube with an inner diameter (ID) of 0.61 mm and an outer diameter (OD) of 0.86 mm. We machined the flexure hinge and the bevel into a short length of this tube. The finished needle head was then glued to the needle shaft, a Nitinol tube with 0.41 mm ID and 0.53 mm OD. We incorporated a 5-DOF magnetic tracking sensor (Northern Digital Inc., Canada) through the inner lumen of the needle for real-time feedback during steering. The sensor coil was placed distal to the needle hinge and fixed with glue. We measured the distance between the glued sensor location and the actual needle tip, and the offset distance was accounted for in software. The needle was deployed into the tissue for steering through a plastic intro-
duction tube that was passed through the bronchoscope. Note
that there is some ambiguity in experiments associated with
determining the initial torsional state within the deadband range,
since the tip angle remains constant as the base angle begins to
rotate, in that case. To overcome this in a practical setting, we
simply rotated the needle in one direction before each insertion,
to wind it up torsionally and cause it to start in a known torsional
state.

The proposed state estimator and the controller were imple-

mented using ROS (Robot Operating System). The control loop
is operated at 40 Hz, which is the maximum update rate of the
magnetic tracking system. The controller gains were selected
to be $\lambda_1 = 5.0 \text{ mm/s}$ and $\lambda_2 = 90^\circ/\text{s}$. A lead distance of 3 mm
was used for moving the desired point along trajectories in the
controller. The sensor noise matrix for the Kalman Filter was
chosen to be $\mathbf{Z} = \text{diag}(0.12, 0.01, 0.5)$ based
on the sensor data sheet and the observed noise from the sensor
with our system, where \mathbf{o} is a vector full of ones. The process
noise was selected as $\mathbf{Q} = \text{diag}(0.001, 0.0005)$.

Steering in Phantom Tissue

As a preliminary validation of our proposed method, we
performed steering experiments in 10% by weight Knox gelatin
(Kraft Foods Global Inc., IL). The experimental setup for this
experiment is shown in Figure 5.

Prior to the experiments, the width of the deadband was cal-
ibrated as $\varphi_0 = 30^\circ$. This was done by observing the needle tip
rotation with a glued 6-DOF tracking coil at the tip, and compar-
ing it to the base rotation while the needle was in the intro-
duction tube deployed through the bronchoscope. A standard 5 French
flexible medical catheter (Cordis, USA) was used as the intro-
duction tube. We also calibrated the radius of curvature of the
needle in gelatin as $1/\kappa = 120$ mm. The same gelatin recipe men-
tioned above was used for this procedure as well. All calibrated
values were incorporated into our EKF and needle model.

We generated eight 60 mm circular trajectories leading to ar-
bitrarily selected target points within the needle’s workspace to
test targeting and trajectory following accuracy. The needle was

<table>
<thead>
<tr>
<th>Insertion Number</th>
<th>Final Targeting Error (mm)</th>
<th>Mean Trajectory Following Error (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EKF Estimate</td>
<td>Raw Sensor</td>
</tr>
<tr>
<td>1</td>
<td>1.17</td>
<td>0.53</td>
</tr>
<tr>
<td>2</td>
<td>0.44</td>
<td>0.34</td>
</tr>
<tr>
<td>3</td>
<td>1.17</td>
<td>2.05</td>
</tr>
<tr>
<td>4</td>
<td>1.34</td>
<td>1.38</td>
</tr>
<tr>
<td>5</td>
<td>1.95</td>
<td>1.91</td>
</tr>
<tr>
<td>6</td>
<td>1.88</td>
<td>1.54</td>
</tr>
<tr>
<td>7</td>
<td>1.95</td>
<td>2.08</td>
</tr>
<tr>
<td>8</td>
<td>0.94</td>
<td>1.44</td>
</tr>
<tr>
<td>Mean</td>
<td>1.36</td>
<td>1.41</td>
</tr>
</tbody>
</table>
steered to these target points, and the Kalman Filter state estimate data was recorded during the insertions, as shown in Figure 6. Raw 5-DOF magnetic tracker sensor data was also recorded during these insertions to compare with the EKF accuracy. As can be seen in Figure 6, the needle successfully steered to the desired target points with 1.36 mm final mean targeting error, shown in Table 1. The needle was able to follow the desired trajectories with an average deviation of 1.28 mm based on the EKF. Table 1 also shows that the tip accuracy based on EKF is agreement with the raw sensor accuracy, indicating that the EKF state estimates remain close to the physical needle tip positions.

Ex-vivo Lung Steering

To further test our methods in a clinical scenario, we performed steering experiments in ex-vivo porcine lungs with the experimental setup shown in Figure 7. The ex-vivo lungs were statically inflated with an air compressor. A pre-operative Computed Tomography (CT) scan (xCAT, Xoran Technologies, USA) was taken at the beginning of the experiments to identify lung anatomy and to determine target points. Airways and vasculature were segmented using the method of [33]. Fiducial markers were used to register the electromagnetic tracker to the CT scanner using point-based registration.

After performing registration, we deployed the bronchoscope into the Airways and used a 21 gauge trans-bronchial needle (eXcelon, Boston Scientific Inc.) to pierce through the wall of the airway. We then slid a plastic sheath over this needle, and then removed the needle from the sheath. Next, we deployed our steerable needle through the plastic sheath. The steerable needle consisted of a coaxial solid flexure tip needle surrounded by a nitinol cannula, which supported the needle between the bronchoscope tip and the bronchial wall.

Once the needle was in place, we selected a target point in the needle’s workspace. We then used a motion planner to generate a trajectory for the steerable needle from its current pose to this target while avoiding the obstacles identified by the segmentation, including vasculature, Airways, and the pleura [33, 34]. Needle steering was initiated along this trajectory, and stopped when the needle reached the target point. In order to rapidly pass through the deadband during insertions, the needle’s insertion velocity was reduced by a factor of 2 and the needle’s axial rotation velocity was increased by a factor of 2.

The targeting results in ex-vivo lung are shown in Table 2. Figure 8 shows one of the insertions. As can be seen from these results, the needle was able to follow the desired trajectories with good accuracy.

CONCLUSION

This paper focuses on the challenge of controlling the path of a long, thin steerable needle delivered through the working channel in a bronchoscope. We sought to determine whether a simple Coulomb friction model (implying a torsional deadband) can be used to model the complex interactions between the needle and the bronchoscope port sufficiently for closed-loop control, acting on only 5-DOF electromagnetic tracking feedback. We found that, in combination with an Extended Kalman Filter and an established sliding mode controller, this approach enables accurate steering along desired trajectories to specified targets in phantom tissue and in inflated ex-vivo porcine lung. In future work, we plan to perform additional ex-vivo experiments...
and eventually use this approach in-vivo in porcine lungs. As we move toward these experiments we will explore whether the coaxial cannula used in our ex-vivo experiments is necessary or whether the needle’s overall sized can be reduced by omitting it. We will also explore the best nominal speeds for insertion and axial rotation, and whether speed variation is needed within the deadband. Furthermore, as we move toward in-vivo experiments, the system will require accurate image registration approaches as well as the potential need to compensation for respiratory motion. However, these challenges have been overcome in prior image guidance and robotic needle insertion studies so they do not seem insurmountable. Thus, this approach paves the way for accurate control of smaller diameter needles that do not hinder the bending capabilities of the tendon actuated bronchoscope tip, and reduce invasiveness, compared to the larger diameters used in the past to accommodate 6-DOF tracking coils.

ACKNOWLEDGMENT

This material is based upon work supported in part by the National Institutes of Health under grants T32EB021937 and R01EB024864. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NIH.

REFERENCES

