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Abstract— Surgical automation has the potential to enable
increased precision and reduce the per-patient workload of
overburdened human surgeons. An effective automation system
must be able to sense and map subsurface anatomy, such as
tumors, efficiently and accurately. In this work, we present a
method that plans a sequence of sensing actions to map the
3D geometry of subsurface tumors. We leverage a sequential
Bayesian Hilbert map to create a 3D probabilistic occupancy
model that represents the likelihood that any given point in the
anatomy is occupied by a tumor, conditioned on sensor readings.
We iteratively update the map, utilizing Bayesian optimization
to determine sensing poses that explore unsensed regions of
anatomy and exploit the knowledge gained by previous sensing
actions. We demonstrate our method’s efficiency and accuracy
in three anatomical scenarios including a liver tumor scenario
generated from a real patient’s CT scan. The results show
that our proposed method significantly outperforms comparison
methods in terms of efficiency while detecting subsurface
tumors with high accuracy.

I. INTRODUCTION

Surgical automation [1], [2] has the potential to increase
precision and reduce the per-patient workload of surgeons, a
group already stretched thin by a general population that is
rapidly outgrowing surgical resources [3], [4]. An effective
autonomous surgical system must be able to sense, map, and
reason about a patient’s anatomy below the visible surface
of organs.

Consider the case of resecting subsurface tumors in an
organ. It is imperative to have an accurate understanding
of the location and geometry of the tumors in the organ
prior to resection in order to minimize the damage to healthy
tissue while ensuring all cancerous tissue is safely removed
(see Fig. 1). While pre-operative imaging techniques such as
computed tomography (CT) can provide general knowledge
of the anatomy, it may change before or during surgery. This
necessitates the use of intraoperative sensing and mapping
of the tumors, e.g., through the use of an ultrasound probe.
Such sensing should be both accurate and efficient in order
to reduce the overall time required for the surgical procedure.
In this work, we present a method to enable an autonomous
surgical system to accurately and efficiently map subsurface
patient anatomy, such as tumors inside an organ.

Specifically, we present a method that utilizes a probabilis-
tic model of anatomical geometry to iteratively determine
sensing actions that improve the model’s understanding of
the geometry. To do so, we wrap a Bayesian optimization [5]
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Fig. 1: Example tumor localization scenario. (a,b) A liver (black) and 3
tumors (red) segmented from a CT scan in the liver tumor segmentation
(LiTS) dataset. (c,d) A cone-shaped sensing volume (purple) normal to the
liver surface (blue) detects the embedded tumors (yellow).

framework around a probabilistic representation of 3D ge-
ometry, called a Bayesian Hilbert map [6], [7], that utilizes
sensor information to determine the likelihood that any
particular point in the organ is occupied by a tumor. Bayesian
Hilbert maps enable us to iteratively update the occupancy
probability of a given continuous anatomical environment as
we obtain sensor readings. The Bayesian Hilbert map then
serves as a continuous posterior distribution on tumor occu-
pancy at each iteration, enabling the Bayesian optimization
to determine the next sensing action. Our method utilizes
an objective function in the optimization that balances the
exploration of unsensed regions of anatomy while reducing
the uncertainty around regions where tumors have already
been identified. In this way the method is able to accurately
map the geometry of the subsurface tumors in a relatively
few number of sensing steps.

While prior work has focused on sensing and mapping
in 2D [8], [9], our use of Bayesian Hilbert maps enables
reasoning over 3D geometry accurately and efficiently. We
evaluate the performance of our method in multiple surgery-
inspired scenarios, including environments in which tumors
are randomly placed, evaluating generalizability, as well as a
real-life scenario generated via the liver tumor segmentation
(LiTS) dataset [10]. We compare our method to random
sampling and a multi-resolution scan. Results show that
our proposed method outperforms both comparison methods,
significantly reducing the number of sensing actions required
for accurately mapping the embedded tumors.



II. RELATED WORK AND BACKGROUND

A variety of methods have been developed to automate
several tasks in robotic surgery. Jansen et al. [11] developed
an automated method of tissue retraction to grasp deformable
objects using a spring model. Elek et al. [12] automated
blunt dissection of tissue using motion primitives. McKinley
et al. [13] developed an interchangeable surgical tool system
to automate a multi-step tumor resection including palpation,
incision, debridement, and injection. In this paper, we focus
on autonomous sensing for tumor localization.

Automated sensing for tumor localization and segmen-
tation has also been studied via palpation. Garg et al. [8]
presented an algorithm that samples over a stiffness map for
localizing tumor boundaries with a palpation probe. Nichols
et al. [9] automated robotic palpation to localize and segment
hard regions in soft tissues, also for tumor localization. These
methods are specific to palpation, framing the problem in
two dimensions. In this work, we consider a 3D sensor,
such as a swept ultrasound, and model the geometry in a
3D continuous space.

Global optimization can enable autonomous surgical sys-
tems to optimize throughout a given search space by finding
the global extremum of a given function. Bayesian optimiza-
tion [5] is one popular global optimization method and has
been widely used in applications such as object surface esti-
mation [14] and hyper-parameter optimization [15]. Bayesian
optimization has also been used in surgical robotics, for
instance as the optimization method in the above mentioned
palpation work of Garg et al. [8]. Particularly effective in
cases where function evaluation is computationally expen-
sive, Bayesian optimization decides which points in the
search space should be sampled and evaluated next via ac-
quisition functions, such as expected improvement (EI) [16].
In this work, we leverage Bayesian optimization to determine
our sensing poses, choosing an acquisition function that
considers the balance between exploration and exploitation.
Since autonomous surgical systems may have limited or
inaccurate prior information regarding the number and size
of tumors present in a given anatomical environment, it is
necessary to simultaneously explore areas of high uncertainty
as well as exploit existing knowledge of areas where tumors
have already been sensed.

A variety of methods have been used to model a proba-
bilistic distribution over a robot’s environment. For instance,
Gaussian processes [17] have been used with Bayesian
optimization as a standard modeling method. Garg et al. [8],
mentioned above, build a probabilistic model of the tissue
stiffness map using Gaussian processes. There have been
other methods, e.g., [18], which model the probabilistic
occupancy state of an environment using Gaussian Processes.
Senanayake et al. [7] developed Bayesian Hilbert maps to
build an occupancy map in dynamic environments. They
simultaneously introduced an extended version of Bayesian
Hilbert maps, sequential Bayesian Hilbert maps [7], as a fast,
sequential long-term occupancy mapping method in dynamic
environments. In this work, we leverage sequential Bayesian

Fig. 2: Example of the sensor pose at iteration t. The sensing pose st is
composed of position pt (yellow dot) and orientation ot (black arrow)

Hilbert maps to build a probabilistic occupancy map updated
sequentially via sensing.

III. PROBLEM FORMULATION

In this work we assume that the sensor is noiseless, that
segmentation in a sensed volume is perfect, and that the
time required to perform the sensing action and associated
segmentation dominates the time required to move the sensor
between sensing poses. We also assume that anatomy is rigid
such that there is no deformation during sensing.

We consider a case where tumors are embedded in an
anatomical environment A � R3, e.g., a patient’s organ.
We define the tumors as T � A, a possibly disconnected
set of arbitrary geometry. We define a sensor workspace S
that includes N possible sensing poses si for i = 1; � � � ; N .
A sensing pose si is a vector concatenating position and
orientation, i.e., si = [pi;oi], where pi 2 R3 and oi 2
SO(3) are the sensing position and orientation, respectively
(see Fig. 2). We define a general sensor model as the set
of points, vi � R3 that are sensed during a sensing action
performed at si, e.g., the volume visualized by an ultrasound
sensing action performed when the transducer is centered and
oriented at si.

Let SM � S then be an ordered sequence of k sensing
actions where SM = fs1; � � � ; st; � � � ; skg and jSMj = k �
N . The sensed volume of a given sequence SM is then

VSM =

k[
i=1

vi:

The goal then is to determine a sequence of sensing actions
SM of minimal length (i.e., jSMj), such that the geometry
of all the tumors are mapped with high certainty.

IV. METHOD

At a high level, our method is composed of two main
pieces: (i) a 3D probabilistic occupancy map, implemented
as a posterior likelihood distribution representing the likeli-
hood that any point in space is occupied by a tumor, and
(ii) an iterative optimization-based framework that reasons
over the current distribution, determines the next sensing
location, performs the sensing, and updates the distribution



Algorithm 1: Sensor Sequence Planning
Input: Sensor workspace S, Search space A
Output: A sequence of sensing configurations SM

1 initialize !  �0;�0

2 t 0
3 while time remains do
4 t t+ 1
5 if t = 1 then
6 st  random(S)
7 SM  st

8 else
9 st  NextQuery(t, !, S, x�)

10 SM  concatenate(SM; st)
11 end
12 Acquire sensor data Dt given st

13 �t;�t  learn parameters(Dt, !)
14 !  �t;�t

15 end
16 return SM

Algorithm 2: NextQuery
Input: t, !, S, x�
Output: Next sensing pose st

1 at  arg maxx� EI(x�; !)
2 st  next sensing pose(at, S)
3 return st

based on what was sensed. Our method performs (ii) in a
loop, iteratively updating (i) to improve the occupancy map,
localizing the tumor(s) quickly and accurately. The method
is outlined in Algorithm 1.

A. Sensor Model

In this work we consider a sensing action at sensing
pose si 2 S to be a cone-shaped volumetric occupancy
map of the anatomy in the cone. In practice this could
come from automated segmentation of a localized ultrasound
sensing action, for instance. This cone then defines the sensor
volume vi (see Fig. 3). Points within the cone are then
labeled as either occupied (i.e., part of tumor geometry), or
unoccupied (i.e., not tumor). More formally, at iteration t,
for each point in the cone x 2 vt we define an occupancy
indicator y 2 f0; 1g denoting whether x is sensed as part
of a tumor. This then defines the tuple (x; y) for each point
in vt. We define the set of these tuples for a given sensing
action as the sensor data Dt. The sensor data Dt acquired
from each measurement is used to update the sequential
Bayesian Hilbert map parameters which define a probabilistic
occupancy map of the unsensed anatomy, described below.

B. 3D Occupancy Mapping

We leverage sequential Bayesian Hilbert maps to model
the occupancy states of given anatomical environments in
an iterative manner. Essentially, sequential Bayesian Hilbert

Fig. 3: Example sensing action. In the cone-shaped sensing volume, oriented
normal to the surface, the unoccupied free points (purple) and occupied
tumor points (yellow) are determined.

maps define a classifier that estimates the probability of an
unsensed point x being occupied. Kernel functions define
the sequential Bayesian Hilbert map features where for some
kernel k, k(x; exj), the kernel evaluates the similarity between
the query point x and a hinge point exj that is fixed at
some location in the search space to be mapped. The feature
vector 	(x) represents the vector of kernel evaluations to all
hinge points in the space, 	(x) = (k(x; ex1); k(x; ex2); � � � ).
Following [7], we fix M hinge points exj for j = 1; � � � ;M
spatially in A to compute the feature vector 	(x) 2 R1�M .
We then define the likelihood of occupancy using the feature
vector via a parametric logistic-regression model,

P (yjx;w) = �(w	T (x));

where �(�) is the sigmoid function and w 2 R1�M is a linear
weight vector. After sensing observation t of data collection,
we model a normal distribution over the weight vector,
w � N (�t;�t), with mean �t 2 R1�M and variance �t 2
R1�M . We define the vector of all parameters ! = f�;�g.
Note that in sequential Bayesian Hilbert maps the weight
vector w is typically initialized with zero mean and high
variance, representing that we do not have prior knowledge
on the distribution. We use the squared exponential kernel in
our implementation

k(x; ex) = exp
�
�jjx� exjj2� (1)

where  is a hyper-parameter defining the length scale of the
kernel.

Given the model we then wish to learn the mean and
variance of the parameter distribution !. As its name sug-
gests, sequential Bayesian Hilbert maps use Bayes’ theorem
to model the posterior distribution of the parameter ! as:

P (wjx; y) =
P (yjx;w)P (w)

P (y)
:

The posterior over weights P (wjx; y) cannot be explicitly
computed because of the combination of the sigmoidal likeli-
hood and Gaussian prior, [7] provides a way to approximate
the posterior Q(!) defined also as Gaussians by estimating
the parameters ! through expectation-maximization (EM).



The learn parameter(�) function in Algorithm 1 is a
function for estimating the parameters !. (See [7] for further
details).

This then defines a continuous probabilistic occupancy
map, e.g., for any query point x� 2 A, the probability of
occupancy is defined as P (yjx�;w).

C. Iterative Optimization-Based Framework

Given the sequential Bayesian Hilbert map at a given
iteration, we must determine the next sensing pose to gather
the most relevant information and update the map. This
process is outlined in Algorithm 2. The sequential Bayesian
Hilbert map provides a probabilistic occupancy map defined
over the 3D anatomy A, but the sequential Bayesian Hilbert
map has no knowledge of our sensor workspace S. As such,
we will first determine a point in A from the sequential
Bayesian Hilbert map that should be sensed next, and then
determine a pose in S that will do so effectively.

We leverage Bayesian optimization to determine the next
query point at 2 A. To do so, we must define an acquisition
function based on the posterior distribution provided by the
sequential Bayesian Hilbert map at the current iteration. As is
frequently the case in Bayesian optimization, in our problem
it is important to define an acquisition function that balances
exploitation and exploration. Insufficient exploitation may
lead to failure to fully map the tumors while insufficient
exploration may result in not mapping tumors in unexplored
regions. To balance these, we choose Expected Improvement
(EI) [16] as our acquisition function.

More formally, EI is defined as

EI(x�) = E[max(0; f(x�)� f(x+))];

where f(�) is an objective function which in our method is
the occupancy likelihood distribution, P (yjx�;w), defined
by the Bayesian Hilbert map at the current iteration, and
f(x+) is the highest value of the distribution. The expected
improvement can be expressed in closed form [16]:

EI(x�; !) = (�� f(x+)� �)�(
�� f(x+)� �

�
)

+��(
�� f(x+)� �

�
)

(2)

where �(�) is the cumulative distribution function, �(�) is the
probability density function, and � is an exploration param-
eter. Mean � and standard deviation � are also computed
via the sequential Bayesian Hilbert map. We are able to
determine the next query point at 2 A by optimizing the
acquisition function, at = arg maxx� EI(x�; !).

We next must determine the sensing pose st corresponding
to the query point at (next sensing pose in Algo-
rithm 2, line 2). To do so, we choose a sensing pose that
has an orientation that closely aligns with the vector defined
by the pose’s position and the query point, i.e., a pose that
points toward the query point (see Fig. 4). We search over
the sensing poses and for each define a query vector q as
the vector between the given sensing pose’s position p and
the query point at. We then determine the angular difference

Fig. 4: Determining the next sensing pose st = (pt; ot). When a query
vector (black vectors) and a sensing pose’s surface normal (orange vectors)
are aligned (blue box), the corresponding pose is selected.

between the sensing pose’s orientation o and q. We select
the first sensing pose found such that this angle is below a
given threshold.

D. Combined Method

Combining the pieces above we get the full method,
outlined in Algorithm 1 and Algorithm 2. The method takes
as input the sensor workspace S and the region to search over
A, and outputs a sequence of sensing configurations SM to
detect the tumor(s) T embedded in the anatomical environ-
ment. We first initialize the parameter ! of each kernel of
the Bayesian Hilbert maps (Algorithm 1 line 1). The first
sensing pose s1 is then randomly chosen from S as we do
not yet have knowledge of the distribution (Algorithm 1 line
6). Afterwards, sensing poses are determined by Algorithm 2
(called by line 9 of Algorithm 1) and the sequence of poses
is accumulated in SM (concatenate in Algorithm 1, line
10). For each sensing pose, the corresponding sensor data Dt

is collected (Algorithm 1 line 12) and is then used to update
the posterior distribution of the parameter ! (Algorithm 1
line 13). The method repeats as time allows, refining the
estimation of the tumor volumes with increasing iterations.

V. EXPERIMENTS AND RESULTS

We evaluate our method in two ways. First, we evaluate the
method’s efficiency and compare against random sampling
and a multi-resolution scan as strategies for determining
sensing pose sequences. We do so in synthetic, randomly
generated example scenarios and demonstrate our method is
capable of localizing the embedded tumors with significantly
fewer sensing actions. Second, we evaluate our method’s
accuracy as a function of the number of sensing actions
in the presence of multiple tumors. We do so both in a
synthetic environment with randomly placed tumors and
in a real medical scenario segmented from a patient CT
scan in the liver tumor segmentation (LiTS) dataset [10].
For all experiments we set the parameters  = 5 in the
kernel function (1), � = 0:01 in the acquisition function (2),
and use 2890 hinge points distributed on a 3D grid in the
environments.

A. Evaluating Efficiency

To evaluate our method’s sampling efficiency quantita-
tively, we generate a synthetic organ surface and place
a spherical tumor volume randomly below it (see Fig. 5
(a)). We refer to this as scenario 1. The randomly placed
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